Lp–BOUNDS FOR THE BEURLING–AHLFORS TRANSFORM
نویسندگان
چکیده
Let B denote the Beurling-Ahlfors transform defined on L(C), 1 < p < ∞. The celebrated conjecture of T. Iwaniec states that its L norm ‖B‖p = p∗ − 1 where p∗ = max{p, p p−1}. In this paper the new upper estimate ‖B‖p ≤ 1.575 (p − 1), 1 < p < ∞ is found.
منابع مشابه
Fourier Multipliers and Dirac Operators
We use Fourier multipliers of the Dirac operator and Cauchy transform to obtain composition theorems and integral representations. In particular we calculate the multiplier of the Π-operator. This operator is the hypercomplex version of the Beurling Ahlfors transform in the plane. The hypercomplex Beuling Ahlfors transform is a direct generalization of the Beurling Ahlfors transform and reduces...
متن کاملSharp Inequalities for the Beurling-ahlfors Transform on Radial Functions
For 1 ≤ p ≤ 2, we prove sharp weak-type (p, p) estimates for the BeurlingAhlfors operator acting on the radial function subspaces of Lp(C). A similar sharp Lp result is proved for 1 < p ≤ 2. The results are derived from martingale inequalities which are of independent interest.
متن کاملThe Martingale Structure of the Beurling-ahlfors Transform
The Beurling-Ahlfors operator reveals a rich structure through its representation as a martingale transform. Using elementary linear algebra and martingale inequalities, we obtain new information on this operator. In particular, Essén-type inequalities are proved for the complex Beurling-Ahlfors operator and its generalization to higher dimensions. Moreover, a new estimate of their norms is obt...
متن کاملHeating of the Ahlfors–beurling Operator, and Estimates of Its Norm
A new estimate is established for the norm of the Ahlfors–Beurling transform Tφ(z) := 1 π ∫∫ φ(ζ) dA(ζ) (ζ−z)2 in L p(dA). Namely, it is proved that ‖T‖Lp→Lp ≤ 2(p − 1) for all p ≥ 2. The method of Bellman function is used; however, the exact Bellman function of the problem has not been found. Instead, a certain approximation to the Bellman function is employed, which leads to the factor 2 on t...
متن کاملOn the Norm of the Beurling–ahlfors Operator in Several Dimensions
The generalized Beurling–Ahlfors operator S on L(R; Λ), where Λ := Λ(R) is the exterior algebra with its natural Hilbert space norm, satisfies the estimate ‖S‖L (Lp(Rn;Λ)) ≤ (n/2 + 1)(p ∗ − 1), p∗ := max{p, p′}. This improves on earlier results in all dimensions n ≥ 3. The proof is based on the heat extension and relies at the bottom on Burkholder’s sharp inequality for martingale transforms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006